Analytical model of a normal mode capacitive discharge

VALERIY LISOVSKIY, Kharkov National University, Svobody sq.4, Kharkov 61077, Ukraine, VLADIMIR YEGORENKO — This paper develops an analytical model describing onset conditions and characteristics for a normal mode of a low pressure capacitive discharge. The model assumes that conductivity current in the plasma volume and displacement current in near-electrode sheaths are equal as well as the ambipolar ion flux out of the plasma and drift ion flux with charge exchange in the sheaths (described by the collisional Child-Langmuir law). The normal current density is found to be proportional to gas pressure and rf field frequency squared, i.e., \(J_n \propto p\omega^2 \). Calculation results match well with registered data for a number of gases.

Valeriy Lisovskiy
Kharkov National University, Svobody sq.4, Kharkov 61077, Ukraine

Date submitted: 05 Jul 2011