Abstract Submitted for the GEC11 Meeting of The American Physical Society

Model of fusion kinetics for electrostatic inertial confinement discharges in D_2 A.V. PHELPS, JILA, University of Colorado and NIST — A model¹ of the collisional kinetics of low-pressure glow discharges in H₂ is extended to predict the energy spectrum of the protons from the D-D fusion reaction in the deuteriumfilled, inertial electrostatic confinement device of Boris et. al.² Deuterium and hydrogen cross sections are assumed equal. D^+ , D_2^+ , or D_3^+ ions injected into a potential minimum created by cathode grid wires produce positive and negative ions, fast neutrals, and electrons. D nuclei undergo D-D fusion reactions with the background D_2 and produce protons with Doppler shifted peaks above and below the reaction energy of 3.02 MeV. The model shows the highest fusion flux, a good fit to the proton spectrum, and at good fit of the calculated¹ anion energy distribution to experiment³ with D_3^+ injection using an effective discharge voltage of 27 kV for an applied voltage of 70 kV. The calculated proton flux is $\sim 10^{-10}$ of the injected ion flux. Predicted deuterium ion energy distributions are very different from that unfolded² from the proton spectrum. With D_2^+ injection, the proton flux is reduced by about an order of magnitude.

¹A. V. Phelps, *Plasma Sources Sci Technol.* **20**, 043001 (2011).

²D. R. Boris, et. al. J. Appl. Phys. **107**, 123305 (2010).

³D. R. Boris, et. al. *Phys. Rev. E* **80**, 036408 (2009).

A. V. Phelps JILA, University of Colorado and NIST

Date submitted: 12 Jul 2011

Electronic form version 1.4