Abstract Submitted for the GEC11 Meeting of The American Physical Society Quantum chemical investigation for Chemical dry etching by flowing NF₃into H₂ down flow plasma TOSHIO HAYASHI, KENJI ISHIKAWA, MAKOTO SEKINE, MASARU HORI, AKIHIRO KONO, Nagoya University, KOUKOU SUU, ULVAC Inc. — The molecular orbital calculations were carried out in order to clarify the reaction schemes of the chemical dry etching using H₂ down flow plasma and NF₃ flowing. It was found that not only HF formation but also F atom generation takes place. And this F atom generation mechanism is very important to realize the highly selective SiO₂ etching process. Probably F formation is suppressed under the three-body reaction regime and the higher gas flow rate of H₂ than that of NF₃. So, careful control of the pressure is a key factor. The examined reaction schemes do not only take place in the vapor phase but also in the condensed phase on the wafer surface. As a result, complex $(NH_4)_2SiF_6$ is formed on the SiO₂ surface, and SiO₂ film is removed. This complex molecule is decomposed by elevating the wafer temperature to produce SiF_4 and the white powder based on NH₃-HF, which may be composed mainly by stratified n(NH₄F)₃ with C₃ symmetry axis. Increasing the wafer temperature moreover, up to 500 K, this white powder also decomposes to HF+NH₃. > Toshio Hayashi Nagoya University Date submitted: 14 Jul 2011 Electronic form version 1.4