Abstract Submitted for the GEC11 Meeting of The American Physical Society

Observation of Plasma Propagation in an Array of Microchannels JIN HOON CHO, SEUNGHYUN RYAN KIM, SUNG-JIN PARK, J. GARY EDEN, University of Illinois at Urbana-Champaign — Discharge dynamics in an array of microscale channels fabricated in Al/Al₂O₃ has been investigated at atmospheric pressure in He and Ar. Microplasmas in channels having a width of 200-300 μ m, a length up to 50 mm, and a volume of 1-15 mm³ have been generated on a static or flowing gas basis. Fabricated by micromachining and wet chemical processes, these channels are situated in a dielectric barrier structure fabricated in 125-250 μ m thick Al foil and having a buried electrode geometry. Spatiotemporally-resolved optical emission profiles, recorded with a gated CCD camera and a telescope, reveal a plasma propagation speed (and direction of excited emission along the microchannel) which varies with gas inlet pressure. For 1 atm of Ar, the velocity of the excitation wave is ~15 km/s.

> Jin Hoon Cho University of Illinois at Urbana-Champaign

Date submitted: 14 Jul 2011

Electronic form version 1.4