Abstract Submitted for the GEC11 Meeting of The American Physical Society

Secondary electrons in dual-frequency capacitive radio frequency discharges¹ JULIAN SCHULZE, EDMUND SCHUENGEL, UWE CZARNET-ZKI, Ruhr-University Bochum, ZOLTAN DONKO, Hungarian Academy of Sciences — Two fundamentally different types of dual-frequency capacitive RF discharges can be used to realize separate control of the ion mean energy, $\langle E_i \rangle$, and the ion flux, Γ_i , at the electrodes: (i) Classical discharges operated at substantially different frequencies, where the low and high frequency voltage amplitudes, ϕ_{lf} and ϕ_{hf} , are used to control $\langle E_i \rangle$ and Γ_i , respectively. (ii) Electrically asymmetric (EA) discharges operated at a fundamental frequency and its second harmonic with adjustable phase shift, θ , between the driving frequencies, which is used to control $\langle E_i \rangle$. We study the effect of secondary electrons on the quality of this separate control in both discharge types in argon at different gas pressures by PIC/MCC simulations with focus on the effect of the control parameter for $\langle E_i \rangle$ on Γ_i for different secondary yields, γ . A dramatic effect of tuning ϕ_{lf} in classical discharges and a significantly less pronounced effect of tuning θ in EA discharges is observed. This is caused by a transition from α - to γ -mode induced by changing ϕ_{lf} and not induced by changing θ .

¹Alexander von Humboldt foundation, Ruhr-University Research Department Plasma, Hungarian Scientific Research Fund (OTKA-K-77653 + IN-85261)

> Julian Schulze Ruhr-University Bochum

Date submitted: 15 Jul 2011

Electronic form version 1.4