Abstract Submitted for the GEC11 Meeting of The American Physical Society

Study of Microwave Plasma Enhanced Methane Flame at Atmospheric Pressure¹ NIMISHA SRIVASTAVA, CHUJI WANG, Mississippi State University, MS, 39762 — Non-thermal plasma assisted combustion can provide potential accommodation in improving fuel efficiency, contaminant reduction, faster ignition time, etc. A 2.45 GHz microwave (MW) plasma source was used with a premixed He/CH_4 gases to study the effect of MW power coupling and hence OH radical generation. UV pulsed laser cavity ringdown spectroscopy was employed to measure absolute number density of OH (A-X) (0-0) band in plasma enhanced flame. Emission species such as OH(A-X), $N_2(C-B)$, $N_2^+(B-X)$ and C_2 swan band were observed using optical emission spectroscopy. Depending on the mixing ratio of CH_4 and MW power, two kinds of CH_4 flames were obtained; (1) Flame with coupled MW energy but no pre-flame (flame and plasma interaction region); at high CH_4/He mixing ratios and low MW energies, detached flame were obtained with detaching gap depended on MW power. (2) Flame with visible pre-flame region: at low CH_4/He mixing ratios and high MW energies. In both the cases total flame volume increased with increase in MW energy. Compared to the flame, OH concentration was higher in the pre-flame.

¹This work is supported by the NSF grant # CBET-1066486.

Nimisha Srivastava Mississippi State University, MS, 39762

Date submitted: 21 Jul 2011

Electronic form version 1.4