Design and characterization of a novel coaxial VHF plasma source for air plasma formation

BRANDON BYRNS, DANIEL WOOTEN, STEVEN SHANNON, North Carolina State University — A key challenge in the expansion of atmospheric plasma applicators into new markets is the effective surface area that these systems can efficiently treat. To this end, a large area atmospheric air glow discharge, with approximately 9.5cm2 cross sectional area, is obtained using a simple coaxial structure. The room air plasma is driven by a 162MHz generator at powers ranging from 300W – 1000W. The VHF drive appears to produce a steady state glow void of streamers or arcs typically found in atmospheric air systems. Electrical measurements coupled with a global plasma model and transmission line theory allow for the calculation of electron density. Densities calculated for 400W are approximately 10^{11} cm$^{-3}$. Spectroscopy data shows dominant emissions consist of OH, N$_2$, and N$_2^+$, along with a continuum indicating neutral bremsstrahlung radiation; this is used for electron density calculations and model validation. In this presentation, source design, plasma characterization, and preliminary surface treatments of HDPE will be presented.

1This work is supported by generous gifts from Applied Materials and Advanced Energy Inc.

Brandon Byrns
North Carolina State University

Date submitted: 15 Jul 2011

Electronic form version 1.4