Abstract Submitted for the GEC12 Meeting of The American Physical Society

Interpretation of calculated transverse and longitudinal diffusion for electrons in gases A.V. PHELPS, JILA and National Inst. of Standards and Technology, G.J.M. HAGELAAR, LAPLACE, CNRS and Universite de Toulouse, France — Ratios of transverse D_T and longitudinal D_L diffusion coefficients to mobility μ and mean energies for electrons in gases are calculated for a wide range of E/N for He, Ar, Xe, H₂, N₂, and CO. These transport coefficients are determined from spatial-gradient expansion, two-term spherical harmonic theory^{1,2} and from Monte Carlo simulations.^{3,4} As predicted by simplified theory⁵ applied to the heavier rare gases, e.g., Ar and Xe, the ratio D_T/D_L reaches 7 to 10 at mean electron energies for which the momentum transfer cross sections are rapidly rising functions of energy. Comparisons are made of simplified⁶ and detailed predictions of D_L/D_T values for N₂ and CO at low electron energies where the effects of scattering by the quadrupole potential of N₂ versus the dipole/quadrupole potential of CO are expected to be observed.

¹J. H. Parker and J. J. Lowke, Phys. Rev. **181**, 290 (1969).
²G. J. M. Hagelaar (unpublished codes, 2012).
³Ibid.
⁴S. F. Biagi, Nucl. Instr. and Meth. A **421**, 234 (1999).
⁵Parker, Lowke, Op. cit.
⁶Ibid.

A. V. Phelps JILA and National Inst. of Standards and Technology

Date submitted: 14 Jun 2012

Electronic form version 1.4