Effect of Secondary Electron Emission on Electron Cross-Field Current in $E \times B$ Discharges

YEVENY RAITSES, IGOR D. KAGANOVICH, ALEX V. KHRABROV, MICHAEL D. CAMPANELL, ERINC TOKLUOGLU, Princeton Plasma Physics Laboratory, DMYTRO SYDORENKO, University of Alberta, ANDREI SMOLYAKOV, University of Saskatchewan — This paper reviews recent experimental, theoretical, and numerical studies of plasma-wall interaction in a weakly collisional magnetized plasma bounded with channel walls made from different materials [1-3]. A low-pressure $E \times B$ plasma discharge of the Hall thruster was used to characterize the electron current across the magnetic field and its dependence on the applied voltage and the electron-induced secondary electron emission (SEE) from the channel wall [1]. The presence of a depleted anisotropic electron energy distribution function with beams of secondary electrons was predicted to explain the enhancement of the electron cross-field current observed in experiments. Without the SEE, the electron cross-field transport can be reduced from anomalously high to nearly classical collisional level. The suppression of the SEE was achieved using an engineered carbon-velvet material for the channel walls [3]. Both theoretically and experimentally, it is shown that the electron emission from the walls can limit the maximum achievable electric field in the magnetized plasma.