Surface vibrational relaxation of N$_2$ studied by infrared titration with time resolved Quantum Cascade Laser diagnostics

D. MARINOV, O. GUAITELLA, A. ROUSSEAU, LPP, Ecole Polytechnique, UPMC, Universite Paris Sud, CNRS, D. LOPATIK, M. HÜBNER, J. RÖPCKE, INP Greifswald, YU IONIKH, Saint-Petersburg State University Institute of Physics — Relaxation of vibrationally excited nitrogen molecules on reactor walls is the most efficient N$_2$(v) loss mechanism in laboratory plasmas at pressures up to few tens of mbars. In the present study a new method for determination of the de-excitation probability γ_{N_2} of vibrationally excited N$_2$ on different surfaces has been developed. A short dc discharge pulse was applied to a mixture containing 0.05-1% of CO$_2$, N$_2$O or CO in N$_2$ at 1.3 mbar. Due to a very efficient vibrational coupling between N$_2$(v) and CO$_2$ (N$_2$O, CO), the vibrational excitation of these titrating molecules is an image of the vibrational excitation of N$_2$. In the afterglow, the vibrational relaxation was monitored \emph{in-situ} using quantum cascade laser absorption spectroscopy. The measurements were performed in a single discharge pulse without signal accumulation. Experimental results were interpreted in terms of a numerical model of non-equilibrium vibrational kinetics. The value of γ_{N_2} was determined from the best agreement between the measured and calculated relaxation times. Using new technique the relaxation probability of N$_2$(v) was measured for SiO$_2$, TiO$_2$, Al$_2$O$_3$, Pyrex and anodized aluminum.