Abstract Submitted
for the GEC12 Meeting of
The American Physical Society

VASIMR VX-200 thruster throttling optimization from 30 to 200 kW
JARED SQUIRE, CHRIS OLSEN, FRANKLIN CHANG-DIAZ, BENJAMIN LONGMIER, MAXWELL BALLINGER, MARK CARTER, TIM GLOVER, GREG MCCASKILL, Ad Astra Rocket Company — The VASIMR® VX-200 experimental plasma thruster incorporates a 40 kW helicon plasma source with a 180 kW Ion Cyclotron Heating (ICH) acceleration stage integrated in a superconducting magnet. Argon propellant mass flow is injected up to 140 mg/s. Rapid plasma start up (< 100 ms) and high pumping speed (> 10⁵ liters/s) in a 150 m³ vacuum chamber achieve performance measurements with the charge exchange mean-free-path greater than 1 m in the background neutral gas (pressure < 10⁻⁵ Torr). The thruster efficiency at 200 kW total power is 72 ± 9%, the ratio of effective jet power to input RF power, with an Isp = 4900 ± 300 seconds (flow velocity of 49 km/s), and an ion flux of 1.7 ± 0.1 × 10²¹/s. The thrust increases steadily with power to 5.8 ± 0.4 N until the power is maximized and there is no indication of saturation. The plasma density near the device exit exceeds 10¹⁸ m⁻³ with a power density over 5 MW/m². An extensive study of thruster performance, efficiency and thrust-to-power ratio, as a function of Ar propellant flow rate and ICH-to-helicon RF power ratio has been carried out over a total power range of 30 to 200 kW. Optimized throttling set points are determined. The experimental configuration and results of this study are presented.

Jared Squire
Ad Astra Rocket Company

Date submitted: 15 Jun 2012

Electronic form version 1.4