GEC13-2013-000049

Abstract for an Invited Paper for the GEC13 Meeting of the American Physical Society

Positron collisions from simple atoms and positronium-hydrogen collisions¹

S.J. WARD, University of North Texas

I plan to present calculations of three-body, effective three-body and four-body collisions at low energies that involve a positron. We applied the hyperspherical hidden crossing method with a correction term to Ps formation in low energy e^+ -H [1,2], e^+ -Li [2,3,4] and e^+ -Na collisions [2]. We considered the alkali atoms Li and Na as effective one-electron atoms, so that e^+ -Li collisions and e^+ -Na collisions can be considered as effective three-body collisions. The calculations provide an explanation of the extremely small S-wave Ps formation cross section for e^+ -H, e^+ -Li and e^+ -Na collisions in terms of destructive interference. The S-wave cross section for Ps formation in e^+ -Li and in e^+ -Na collisions increases with decreasing momentum of the incoming Ps, which is consistent with the Wigner threshold law [5]. We have also studied at low-energies a fundamental four-body Coulomb process, that of elastic Ps-H scattering [6]. Using the Kohn variational method (and variants of this method) we have computed accurate ^{1,3}S- and ^{1,3}P-wave phase shifts. We also have some preliminary ^{1,3}D-wave phase shifts.

- [1] S. J. Ward, J. H. Macek and S. Yu. Ovchinnikov, Phys. Rev. A 59, 4418 (1999).
- [2] S. J. Ward and J. Shertzer, New. J. Phys. 14, 025003 (2012).
- [3] S. J. Ward and J. Shertzer, Phys. Rev. A 68, 032720 (2003).
- [4] S. J. Ward, J. Shertzer, S. Yu. Ovchinnikov, and J. H. Macek, Phys. Rev. A 75, 012713 (2007).
- [5] P. Wigner, Phys. Rev. 73, 1002 (1948).
- [6] Denton Woods, S. J. Ward and P. Van Reeth, Bull. Am. Phys. Soc. 58, no. 6, p. 175 (2013).

¹S.J.W. acknowledges current support from NSF under grant no. PHYS-0968638 and prior NSF support under a collaborative grant PHYS-0440565 (S. J. W) and PHYS-0440714 (J.S.).