Abstract Submitted for the GEC13 Meeting of The American Physical Society

Glow Discharge with Confinement of Electrons in an Electrostatic Trap ALEXANDER METEL, Moscow State University of Technology "STANKIN" — Theory based on the concept of the gas ionization cost W is found to be in a good agreement with experimental study of the glow discharge with electrostatic trap in the gas pressure range 0.001-10 Pa. When the mean ionization length λ of emitted by the cathode electrons exceeds the trap width a = 4V/S, where V is the trap volume and S is area of the trap boundary, and their energy relaxation length $\Lambda = (eU_c/W)\lambda$, where U_c is cathode fall of potential, is lower than the trap length $L = 4V/S_o$, where S_o is output aperture of the trap, U_c is independent of the pressure p. In this middle pressure range due to multiplication of fast electrons in the cathode sheath U_c diminishes about 2 times from its maximum W/e γ , where γ is coefficient of ion-induced electron emission, with the discharge current reduction. At $\Lambda > L$ the cathode fall U_c rises from hundreds to thousands of volts and p tends to the discharge extinction pressure p^{ex} , at which the ionization length λ of electrons with energy equal to the energy of electrons emitted by the cathode in the middle pressure range is equal to L.

> Alexander Metel Moscow State University of Technology "STANKIN"

Date submitted: 05 Jun 2013

Electronic form version 1.4