Abstract Submitted for the GEC13 Meeting of The American Physical Society

Photo-assisted etching of silicon in halogen-containing plasmas¹ SHYAM SRIDHAR, WEIYE ZHU, LEI LIU, DEMETRE ECONOMOU, VINCENT DONNELLY, University of Houston — Cl₂, Br₂, HBr, and HBr/Cl₂ feed gases diluted in Ar were used to study etching of p-type Si(100) in a RF inductively coupled, Faraday-shielded plasma. Etching rates were measured as a function of ion energy. Etching at ion energies below the threshold for ion-assisted etching was observed in all cases, with Br_2/Ar and $HBr/Cl_2/Ar$ plasmas having the lowest and highest sub-threshold etching rates, respectively. Sub-threshold etching rates scaled with the product of surface halogen coverage (measured by XPS) and Ar emission intensity (7504\AA) . Etching rates measured under MgF₂, quartz, and opaque windows, or biased grids, showed that sub-threshold etching is due to photon-stimulated processes on the surface, with VUV photons being much more effective than longer wavelengths. Scanning electron and atomic force microscopy (SEM and AFM) revealed that photo-etched surfaces were very rough, quite likely due to the inability of the photo-assisted process to remove contaminants from the surface. Photo-assisted etching in Cl_2/Ar plasmas resulted in the formation of 4-sided pyramidal features with bases that form an angle of 45° with respect to $\langle 110 \rangle$ cleavage planes, suggesting that the photo-assisted etching process is sensitive to crystal orientation, at least for chlorine.

¹Work supported by DOE Plasma Science Center and NSF.

Shyam Sridhar University of Houston

Date submitted: 14 Jun 2013

Electronic form version 1.4