GEC13-2013-000414

Abstract for an Invited Paper for the GEC13 Meeting of the American Physical Society

Efficient production of Ps and progress towards high densities of Ps^1

ADRIC JONES², University of California, Riverside

In the last two decades, the development of techniques to store and manipulate large numbers of positrons³ has made it possible to study many interesting related phenomena.^{4,5,6} As the number of trapped positrons increases, new experiments are made possible. Recently Cassidy *et al.*⁷ have demonstrated that positronium (Ps) is emitted from clean p- and n-type Si surfaces, with very high efficiency. The discovery of an efficient mechanism for producing Ps (as much as $\sim 70\%$ of the incident positrons are converted to Ps at high sample temperatures) paves the way for studies with high densities of Ps. Here I will discuss recent efforts to better characterize the Ps emitted from both p- and n-type Si surfaces, and describe other experiments that are either planned or have been conducted with such Ps beams.

¹This work is supported in part by the US National Science Foundation grant PHY 1206100.
²Work performed in collaboration with T. Hisikado, D. B. Cassidy, A. Escalera and A. P. Mills, Jr.
³R. G. Greaves & C. M. Surko (1997) Phys. Plasmas 4 4, 1528.
⁴C. M. Surko et al. (2005) J. Phys. B 38, R57
⁵G. F. Gribakin et al. (2010) Rev. Mod. Phys. 82, 2557
⁶D. B. Cassidy & A. P. Mills, Jr. (2007) Nature 449, 195
⁷D. B. Cassidy et al. (2011) Phys. Rev. Lett. 106, 133401