Reduction Mechanism of Surface Roughness on ArF-Photoresist Using C$_5$HF$_7$ Gas Plasma

YUDAI MIYAWAKI, KEIGO TAKEDA, HIROKI KONDO, KENJI ISHIKAWA, MAKOTO SEKINE, Nagoya University, AZUMI ITO, HIROKAZU MATSUMOTO, ZEON CORPORATIO, MASARU HORI, Nagoya University — Fluorocarbon (FC) plasmas have been used in reactive ion etch processes for the fabrication of high-aspect-ratio-contact-hole on SiO$_2$. There are some needs, such as high selectivity over photoresist (PR), Si$_3$N$_4$ and Si, avoiding surface roughness formation on ArF- PR. C$_5$F$_8$ gas is known to improve the SiO$_2$ selectivity compared with C$_4$F$_8$ and conventional gas chemistries. Recently, we achieved that highly selective etching of SiO$_2$ against PR, Si$_3$N$_4$ and Si using a newly-designed gas, C$_5$HF$_7$, and O$_2$, Ar gas mixture. So far, we have investigated the etch performances and its mechanism using C$_5$HF$_7$ gas chemistry through comparison with C$_5$F$_8$ gas. In this study, we focused on the mechanism of reducing the surface roughness formation on ArF-PR during SiO$_2$ etching in the C$_5$HF$_7$ gas chemistry. The plasma etching time dependency of surface morphology on ArF-PR was compared with the case of C$_5$F$_8$. For C$_5$F$_8$/O$_2$/Ar plasma, surface roughness increased. For C$_5$HF$_7$/O$_2$/Ar plasma, RMS roughness about 2 nm was formed on the PR surface at 5 sec. As the time elapsing, surface roughness stayed constant. The RMS roughness caused by C$_5$HF$_7$ gas chemistry was lower than that of C$_5$F$_8$. Since F atoms in FC film were reduced by hydrofluorocarbon species, C$_x$HF$_y$, the FC polymerization was enhanced selectively on PR to form a thicker FC film that protects the PR surface from ion bombardments, while keeping the high etch rate for SiO$_2$.

Yudai Miyawaki
Nagoya University

Date submitted: 14 Jun 2013

Electronic form version 1.4