Abstract Submitted for the GEC13 Meeting of The American Physical Society

Measurement of negative ion mobility with a trace moisture analyzer in O₂ YUI OKUYAMA, SUSUMU SUZUKI, HARUO ITOH, Chiba Institute of Technology — We have been investigated the effects of impurities on the negative ion mobility in O_2 at high pressures including atmospheric pressure using a highpressure ion drift tube with a positive point plate gap that acts as a negative ion detector [1]. When a small admixture of impurities such as N_2 and CO_2 from atmosphere are existed in O_2 , negative ion mobility is increased at E/N > 1.77 Td due to formations of NO_2^- , NO_3^- , CO_3^- , CO_4^- as impurity ions. In addition, existence of H₂O in O₂ leads to decrease negative ion mobility because $O_2^- (H_2O)_n$ forms by ion-molecule between O_2^- or O_4^- and H_2O [2]. In this work, we describe the experimental results on the measurement of negative ion mobility in ultrahigh-purity O_2 with a trace moisture analyzer (HALO-H₂O). The ion drift tube is mounted in the stainless steel chamber with stainless steel pipes to connect the trace moisture analyzer and O_2 bottle of 99.99995% purity with a gas defecator (MICROTORR: MC200-203). Mobility measurements were carried out after gas flowing, baked and pumped the chamber and gas lines at least two months due to remove impurities. During the measurements, O_2 were flowed through the chamber at 0.5 L/min. As the results, a constant mobility 2.39 cm^2/V was observed at H₂O concentration between 30 and 100 ppb. This value is good agreement with the polarization limit of mobility for O_4^- .

Y. Okuyama et al, J. Phys. D: Appl. Phys., 45, 195202 (2012).
Y. Okuyama et al, 65th Annual Gaseous Electronic Conference, 57, 8, MW2.00006 (2012).

Yui Okuyama Chiba Institute of Technology

Date submitted: 27 Jul 2013

Electronic form version 1.4