Abstract Submitted for the GEC14 Meeting of The American Physical Society

Spectroscopic Examination of Vibrational and Rotational Properties of NO $A^2\Sigma^+$ Metastable State from NO γ -Band Spectra in N₂-O₂ Mixture Microwave Discharge HAO TAN, ATSUSHI NEZU, HARUAKI MAT-SUURA, HIROSHI AKATSUKA, Tokyo Institute of Technology — The spectra are observed in our microwave discharge plasma experiments. N₂-O₂ mixture plasma is generated by using a rectangular waveguide. We measured the spectra at 0, 60, 100 and 140 mm with the discharge pressure several Torrs. From these results, we can find that both NO and N_2 molecules experience a cooling down process both on vibrational and rotational temperatures as the plasma flows to the downstream direction. And NO molecule has always a higher rotational temperature than N_2 . Meanwhile, we can see that in this nonequilibrium plasma, both NO and N_2 molecules tend to get higher energy for vibrational motion than for rotational motion. We also change the gas partial pressure rate, when O_2 molar ratio of the mixture increases, the NO experiences an increasing vibrational temperature. This is because that the NO $A^2\Sigma^+$ metastable state is excited from two main paths: N₂(A ${}^{3}\Sigma_{u}^{+}) + NO(X {}^{2}\Pi) \rightarrow N_{2}(X {}^{1}\Sigma_{g}^{+}) + NO(A {}^{2}\Sigma^{+}), (1) NO(X {}^{2}\Pi) + e^{-} \rightarrow NO(A {}^{2}\Sigma^{+}) + e^{-}$ (2) When O_2 or N_2 is the majority of the discharge species, reaction (2) or (1) dominates the excitation process of NO $A^2\Sigma^+$, respectively. Therefore, under our plasma conditions, vibration-vibration energy transition of the reaction (1) results in a strong vibrational relaxation of NO $A^2\Sigma^+$ state molecules when N_2 is the majority in the discharge gas. In conclusion, the admixture of N_2 gas can lead to the reduction of average vibrational temperature significantly.

> Hiroshi Akatsuka Tokyo Institute of Technology

Date submitted: 05 Jun 2014

Electronic form version 1.4