Abstract Submitted for the GEC14 Meeting of The American Physical Society

Mechanism of N_2 Dissociation and Kinetics of $N(^4S)$ Atoms in Pure Nitrogen Plasma¹ ANDREY VOLYNETS, Lomonosov Moscow State University, Faculty of Physics, DMITRY LOPAEV, NIKOLAY POPOV, Lomonosov Moscow State University Skobeltsyn Institute of Nuclear Physics — This work deals with kinetics of the ground state nitrogen atoms $N(^{4}S)$ and N_{2} dissociation mechanism in pure N₂ plasma. The experiment was carried out in positive column of DC glow discharge for p=5-50Torr, J=20-100mA. N(⁴S) balance was considered for spatially uniform conditions controlled by only two terms: source (characterized by effective production rate k_{eff}) and loss (characterized by effective loss time τ_{loss}). Analysis of k_{eff} and τ_{loss} gains considerably better understanding of N₂ dissociation. N/N_2 dissociation rate as function of discharge parameters was obtained using two independent optical methods: actinometry on Ar atoms and N_22+ band emission decay at discharge modulation. With N/N_2 radial profiles N atom surface loss probability γ_N and then τ_{loss} were estimated. γ_N revealed to be dependent on $N(^{4}S)$ concentration and thereby discharge conditions through the sorption balance of physisorbed N atoms. Phenomenological model taking into account basic surface processes provides γ_N data in good agreement with experiment. Finally, k_{eff} was obtained as function of E/N and it was shown that even EEDF calculated with accounting for N_2 vibrational excitation is unable to provide observed values of k_{eff} . Reasons of that fact are discussed in detail.

¹The work was supported by RFBR (grant #11-02-91063 - CNRS) and by Optec grant

Andrey Volynets Lomonosov Moscow State University, Faculty of Physics

Date submitted: 12 Jun 2014

Electronic form version 1.4