Operation of a high-voltage, high-power gaseous electronics switch for electric grid power conversion1 TIMOTHY SOMMERER, SERGEY ZALUBOVSKY, General Electric Research, Niskayuna, NY — A series of approximations and simple models is used to estimate the properties of a cold-cathode plasma in a high-voltage, high-power gas switch for use in grid-scale electric power conversion. The active volume is a plane-parallel gap \(\sim 1 \text{ cm} \) filled with hydrogen at a pressure \(\sim 0.3 \text{ torr} \). A magnetic field in the region adjacent to the cathode is used to increase the current density to practical levels \(\sim 1 \text{ A/cm}^2 \). The estimated bulk plasma density is mid-\(10^{12} \text{ cm}^{-3} \) and the electron temperature is \(\sim 3 \text{ eV}, \) to offset volume recombination. The magnetic field enhances ionization near the cathode and also impedes electron diffusion away from the region, sometimes resulting in a peak of plasma density in an extended presheath region. The switch is opened by applying a positive potential to a grid between the cathode and anode, leading to the formation of an ion matrix sheath around the grid, and an ion-acoustic wave that sweeps out the conducting plasma between the grid and the anode in about 1 \(\mu \text{s} \).

1The information, data, or work presented herein was funded in part by the Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department of Energy, under Award Number DE-AR0000298.

Timothy Sommerer
General Electric Research, Niskayuna, NY

Date submitted: 13 Jun 2014

Electronic form version 1.4