Abstract Submitted for the GEC14 Meeting of The American Physical Society

Molecular dynamics analysis of silicon chloride ion incidence during Si etching in Cl-based plasmas: Effects of ion incident energy, angle, and neutral radical-to-ion flux ratio NOBUYA NAKAZAKI, KOJI ERIGUCHI, KOUICHI ONO, Kyoto University — Profile anomalies and surface roughness are critical issues to be resolved in plasma etching of nanometer-scale microelectronic devices, which in turn requires a better understanding of the effects of ion incident energy and angle on surface reaction kinetics. This paper presents a classical molecular dynamics (MD) simulation of Si(100) etching by energetic Cl_x^+ (x = 1-2) and $SiCl_x^+$ (x = 0-4) ion beams with different incident energies $E_i = 20-500$ eV and angles $\theta_i = 0-85^\circ$, with and without low-energy neutral Cl radicals (neutral-to-ion flux ratios $\Gamma_n/\Gamma_i = 0$ and 100). An improved Stillinger-Weber interatomic potential was used for the Si/Cl system. Numerical results indicated that in Cl⁺, Cl⁺₂, SiCl⁺₃, and SiCl₄⁺ incidences for $\theta_i = 0^\circ$ and $\Gamma_n/\Gamma_i = 0$, the etching occurs in the whole E_i range investigated; on the other hand, in $SiCl^+$ and $SiCl_2^+$ incidences, the deposition occurs at low $E_i < 300$ and 150 eV, respectively, while the etching occurs at further increased E_i [1]. For SiCl⁺ and SiCl⁺₂, the transition energies from deposition and etching become lowered for $\Gamma_n/\Gamma_i = 100$. Numerical results further indicated that in the SiCl⁺ incidence for $\Gamma_n/\Gamma_i = 0$, the etching occurs in the whole θ_i range investigated for $E_i \ge 300 \text{ eV}$; on the other hand, for $E_i = 100 \text{ and } 150 \text{ eV}$, the deposition occurs at low $\theta_i < 60^\circ$ and 40° , respectively, while the etching occurs at further increased θ_i ; in addition, for $E_i \leq 50$ eV, the deposition occurs in the whole θ_i range investigated.

[1] N. Nakazaki et al., Jpn. J. Appl. Phys. 53, 056201 (2014).

Nobuya Nakazaki Kyoto University

Date submitted: 13 Jun 2014

Electronic form version 1.4