Evaluation of Plasma Temperature from the OH Violet Molecular Emission System

HOSSEIN NASSAR, OULOUM AOUDE, Lebanese University-Faculty of Public Health section4 — The violet OH system ($A^2 \Sigma^+ \rightarrow X^2 \Pi_i$) molecular emission spectrum is frequently observed in plasma sources containing water; it is a good tool for diagnosing plasmas containing this molecule. We have simulated the spectrum of (0,0) band of this system from 3064 Å for different rotational temperature. The method proposed permit to evaluate, by comparing point to point a real spectrum with the simulated one, temperature and apparatus function, approximated by the gauss function (the half-width at 1/e height). Moreover, it is shown, by noised spectra simulation, the influence of noise to signal ratio at the calculated temperature values. If the noise to signal ratio is about 10%, we found an error of 6% at temperature 3000K and 10% at 6000K. This method has been used to determine the combustion temperature from a real spectrum recording in Polymethyl methacrylate rocket plume taken 0 mm from the nozzle of fuel grain. The rotational temperature of about 3000 ± 350 K, has been found and noise to signal ratio is about 20%.

Hossein Nassar
Lebanese University-Faculty of Public Health section4

Date submitted: 14 Jun 2015
Electronic form version 1.4