Abstract Submitted for the GEC15 Meeting of The American Physical Society

Vibrational kinetics in Cl_2 and O_2 low-pressure inductivelycoupled plasmas¹ JEAN-PAUL BOOTH, MICKAEL FOUCHER, DANIIL MARINOV, PASCAL CHABERT, LPP-CNRS, Ecole Polytechnique, Palaiseau, France, ANNA ANNUSOVA, VASCO GUERRA, IPFN, IST, Universidade de Lisboa, Portugal, ANKUR AGARWAL, SHAHID RAUF, Applied Materials, Sunnyvale, CA — Low energy electron interactions with molecules via resonances can cause vibrational excitation (affecting chemical kinetics), electron energy loss and modification of the EEDF. However, with the exception of N_2 and H_2 plasmas, very little attention has been paid to this subject. We have implemented a novel highsensitivity ultra-broadband UV absorption bench, allowing spectra to be recorded with noise as low as 2×10^{-5} over a 250nm wavelength range, and recording of complete vibronic bands. We applied this to radiofrequency inductively-coupled plasmas in low pressure (5-50 mTorr) pure O_2 and pure Cl_2 . In O_2 plasmas we surprisingly observe highly vibrationally excited O₂ (v" up to 18) via B-X Schumann-Runge bands. Cl₂ molecules show a broad UV absorption spectrum in the region 250-400nm, with distinctly different absorption spectra for vibrationally excited molecules. However, only a small fraction of the Cl_2 molecules were observed in vibrationally excited states and the vibrational temperature is close to equilibrium with the local gas translational temperature (up to 1000 K), in contrast to O₂. We are currently working on global models with vibrational kinetics to explain these results.

¹Work supported by LABEX Plas@par (ANR-11-IDEX-0004-02), and Applied Materials

Jean-Paul Booth LPP-CNRS, Ecole Polytechnique, Palaiseau, France

Date submitted: 17 Jun 2015

Electronic form version 1.4