GEC15-2015-000270

Abstract for an Invited Paper for the GEC15 Meeting of the American Physical Society

Thomson scattering diagnostics of atmospheric pressure plasmas - Pulsed filament discharges and plasma jets KENTARO TOMITA¹, Kyushu University

Recently, non-thermal atmospheric-pressure plasmas have received much attention. Because the characteristics of the plasmas are governed by free electrons, measurements of the electron density (n_e) and electron temperature (T_e) are a prerequisite for understanding plasma behavior. To contribute to the understanding of non-thermal atmospheric-pressure plasmas, we have been developing a laser Thomson scattering (LTS) technique as a diagnostic method for measuring n_e and T_e of two types of plasmas; a pulsed-filament discharge and He flow plasma jet. The pulsed filament discharge has a short current width (a few tens of ns) and a small size. In order to apply LTS to such plasmas, reproducibility of time and space of the plasmas were

improved using a high-speed semiconductor switch. Spatiotemporal evolutions of $n_{\rm e}$ and $T_{\rm e}$ of a main discharge have been obtained. Now we try to apply LTS at a time of primary streamer. Regarding to the He flow plasma jet, the discharge was generated with He gas flow with N₂/O₂(20%) or N₂ shielding gas. It was confirmed that the $n_{\rm e}$ at the center of the plasma with N₂/O₂ shielding gas was around 50% higher than that with the N₂ shielding gas.

¹In collaboration with Keiichiro Urabe, The University of Tokyo; Naoki Shirai, Tokyo Metropolitan University; Safwat Hassaballa, Al-Azhar University; Nima Bolouki, Munehiro Yoneda, Takahiro Shimizu, Yuta Sato, and Kiichiro Uchino, Kyushu University.