Abstract Submitted for the GEC15 Meeting of The American Physical Society

Fluid simulation and experimental measurement of radical densities in capacitively coupled CF_4/Ar plasma¹ YING-SHUANG LIANG, YONG-XIN LIU, YU-RU ZHANG, WEN-YAO LIU, YOU-NIAN WANG, Dalian University of Technology — Both of the two-dimensional self-consistent fluid model and the experimental diagnostic method are employed to investigate the effects of the external parameters on the plasma parameters, especially on the production and loss of the CF_2 and F radicals, in the capacitively coupled CF_4/Ar plasmas driven at 60 MHz. It is observed that the CF_3 and F are the two main radicals under all the investigated conditions. With the increase of the discharge power, the densities of the CF_2 and F radicals increase almost linearly. By comparing the calculated and experimental results, it is found that the main production mechanism of the CF_2 radical is the electron-impact dissociation of CF_4 . However, the electron-impact dissociation of CF_3 plays an important role in the production of the F radicals, besides the electron-impact dissociation of CF₄. The general qualitative agreement between the calculated and the experimental results indicates that the present fluid model correctly describes the CF_4/Ar capacitive discharge.

¹This work was supported by the National Natural Science Foundation of China (NSFC) (Grant Nos. 11335004, 11405018, 11405019) and the Important National Science and Technology Specific Project (Grant No. 2011ZX02403-001).

Ying-Shuang Liang Dalian University of Technology

Date submitted: 18 Jun 2015

Electronic form version 1.4