Quantification Approach of Gas Temperature Distribution in Atmospheric Positive DC Glow Discharge Measured by Spectroscopic Imaging

RYO SASAMOTO, HIDEAKI ORII, TAKAO MATSUMOTO, YASUJI IZAWA, KIYOTO NISHIJIMA, Department of Electrical Engineering, Fukuoka University

In our previous work, a two-dimensional (2D) gas temperature distribution in a positive DC steady-state glow corona was qualitatively measured by spectroscopic imaging. Spectral images of its glow corona were taken using ICCD camera with ultra-narrow band-pass filters, and they were corresponded to the head and tail of a second positive system bands of nitrogen (2PS N\textsubscript{2} (0-2)). The qualitative gas temperature was obtained from the emission intensity ratio ($I_{2P\text{tail}}/I_{2P\text{head}}$) between the head and tail of 2PS N\textsubscript{2} (0-2). This emission intensity ratio also equals the rotational temperature (T_R), and T_R almost equals the gas temperature (T_G) in atmospheric pressure. In this work, the qualitative 2D gas temperature distribution was derived from 2D $I_{2P\text{tail}}/I_{2P\text{head}}$ plots, and the calibration date of $I_{2P\text{tail}}/I_{2P\text{head}}$ for T_R was accumulated by investigating the relationship between the spatially average absolute gas temperature (T_{av}) obtained by single-point spectroscopic measurement and the average value of $I_{2P\text{tail}}/I_{2P\text{head}}$ plots. On the basis of the calibration date, a spectroscopically-imaged qualitative 2D $I_{2P\text{tail}}/I_{2P\text{head}}$ distribution in a positive DC glow corona was converted to a quantitative 2D image of gas rotational temperature.

Ryo Sasamoto
Department of Electrical Engineering, Fukuoka University

Date submitted: 19 Jun 2015
Electronic form version 1.4