Electron Heating in Capacitively Coupled RF Discharges Investigated with the Smooth Step Model1 RALF PETER BRINKMANN, Ruhr University Bochum, Institute for Theoretical Electrical Engineering — Electron heating in radio-frequency driven capacitively coupled plasmas is studied on the basis of the recently proposed *Smooth Step Model* [R.P. Brinkmann, *Plasma Sources Sci. Technol.* (2015)]. This algebraic model provides an expression for the electric field in a RF modulated plasma sheath transition which yields i) the space charge field in the sheath, ii) the generalized Ohmic and ambipolar field in the plasma, and iii) a smooth interpolation for the rapid transition in between. It was derived via an expansion of an electron fluid model in terms of two smallness parameters, the ratios $\epsilon = \lambda_D/l$ of the Debye length λ_D to the minimum gradient length l and $\eta = \omega_{RF}/\omega_{pe}$ of the RF frequency ω_{RF} to the electron plasma frequency ω_{pe}. The explicit field formula provided by the Smooth Step Model enables semi-analytic expressions for the phased-resolved and the phase-averaged dissipated power. Comparison with other models of electron heating is made.

1Deutsche Forschungsgemeinschaft (DFG) via Research Group FOR 1123 and Sonderforschungsbereich SFB-TR 87