MHD Simulations of Thermal Plasma Jets in Coaxial Plasma Accelerators

VIVEK SUBRAMANIAM, LAXMINARAYAN RAJA, The University of Texas at Austin — The development of a magneto-hydrodynamics (MHD) numerical tool to study high energy density thermal plasma in coaxial plasma accelerators is presented. The coaxial plasma accelerator is a device used simulate the conditions created at the confining wall of a thermonuclear fusion reactor during an edge localized mode (ELM) disruption event. This is achieved by creating magnetized thermal plasma in a coaxial volume which is then accelerated by the Lorentz force to form a high velocity plasma jet. The simulation tool developed solves the resistive MHD equation using a finite volume method (FVM) framework. The acceleration and subsequent demagnetization of the plasma as it travels down the length of the accelerator is simulated and shows good agreement with experiments [1]. Additionally, a model to study the thermalization of the plasma at the inlet is being developed in order to give self-consistent initial conditions to the MHD solver.


Vivek Subramaniam
The University of Texas at Austin

Date submitted: 19 Jun 2015