Abstract Submitted for the GEC15 Meeting of The American Physical Society

Comparative Shock-Tube Study of Autoignition and Plasma-Assisted Ignition of C_2 -Hydrocarbons ILYA KOSAREV, SVETLANA KINDY-SHEVA, EUGENY PLASTININ, NIKOLAY ALEKSANDROV, Moscow Institute of Physics and Technology, ANDREY STARIKOVSKIY, Princeton University — The dynamics of pulsed picosecond and nanosecond discharge development in liquid water, ethanol and hexane Using a shock tube with a discharge cell, ignition delay time was measured in a lean ($\varphi = 0.5$) C₂H₆:O₂:Ar mixture and in lean (φ (0.5) and stoichiometric $C_2H_4:O_2:Ar$ mixtures with a high-voltage nanosecond discharge and without it. The measured results were compared with the measurements made previously with the same setup for C_2H_6 -, C_2H_5OH - and C_2H_2 -containing mixtures. It was shown that the effect of plasma on ignition is almost the same for C_2H_6 , C_2H_4 and C_2H_5OH . The reduction in time is smaller for C_2H_2 , the fuel that is well ignited even without the discharge. Autoignition delay time was independent of the stoichiometric ratio for C_2H_6 and C_2H_4 , whereas this time in stoichiometric C_2H_2 - and C_2H_5OH -containing mixtures was noticeably shorter than that in the lean mixtures. Ignition after the discharge was not affected by a change in the stoichiometric ratio for C_2H_2 and C_2H_4 , whereas the plasma-assisted ignition delay time for C_2H_6 and C_2H_5OH decreased as the equivalence ratio changed from 1 to 0.5. Ignition delay time was calculated in C₂-hydrocarbon-containing mixtures under study by simulating separately discharge and ignition processes. Good agreement was obtained between new measurements and calculated ignition delay times.

> Andrey Starikovskiy Princeton University

Date submitted: 19 Jun 2015

Electronic form version 1.4