Abstract Submitted for the GEC15 Meeting of The American Physical Society

Laser diagnostics on atmospheric-pressure low-temperature helium pulsed plasmas in room- and cryogenic-temperature environments NORITAKA SAKAKIBARA, HITOSHI MUNEOKA, KEIICHIRO URABE, RY-OMA YASUI, KAZUO TERASHIMA, The University of Tokyo — In atmosphericpressure low- temperature plasmas, the control of the plasma gas temperature (T_g) by a few kelvin is considered to be crucial for their applications to novel materials processing such as bio-materials. However, there have been only few studies that focused on the influence of $T_{\rm g}$ on the plasma characteristics. On the other hand, it was reported that helium metastables played a key role in the dependency of chemical reactions on $T_{\rm g}$ in helium-nitrogen plasmas. In this study, laser diagnostics were carried out in atmospheric-pressure helium pulsed plasmas near or below room temperature, at 340-100 K. Parallel electrodes of copper rods (diameter: 2 mm) with a gap distance of 535 μ m were used and pulsed discharges with a pulse width of a few hundred nanoseconds were generated inside a reactor. The density and lifetime of helium metastables were estimated by laser absorption spectroscopy measurements and $T_{\rm g}$ was evaluated by near-infrared laser heterodyne interferometry measurements. At 300 K, the helium metastable density was 1.5×10^{13} cm⁻³ while the lifetime was 3.1 $\mu {\rm s},$ and increase in $T_{\rm g}$ was up to 70 K. Dependency of the density and lifetime of helium metastables on $T_{\rm g}$ was observed and also discussed.

> Noritaka Sakakibara The University of Tokyo

Date submitted: 19 Jun 2015

Electronic form version 1.4