Influence of Ar/O₂/H₂O Feedgas AND N₂/O₂/H₂O Environment on the Interaction of Time Modulated MHz Atmospheric Pressure Plasma Jet (APPJ) with Model Polymers

GOTTlieb Oehrlein, Ping-Shan Luan, Andrew Knoll, University of Maryland, Santosh Kondeti, Peter Bruggeman, University of Minnesota — An Ar/O₂/H₂O fed time modulated MHz atmospheric pressure plasma jet (APPJ) in a sealed chamber was used to study plasma interaction with model polymers (polystyrene, poly-methyl methacrylate, etc.). The amount of H₂O in the feed gas and/or present in the N₂, O₂, or N₂/O₂ environment was controlled. Short lived species such as O atoms and OH radicals play a crucial role in polymer etching and surface modifications (obtained from X-ray photoelectron spectroscopy of treated polymers without additional atmospheric exposure). Polymer etching depth for Ar/air fed APPJ mirrors the decay of gas phase O atoms with distance from the APPJ nozzle in air and is consistent with the estimated O atom flux at the polymer surface. Furthermore, whereas separate O₂ or H₂O admixture to Ar enhances polymer etching, simultaneous addition of O₂ and H₂O to Ar quenches polymer etching. This can be explained by the mutual quenching of O with OH, H and HO₂ in the gas phase. Results where O₂ and/or H₂O in the environment were varied are consistent with these mechanisms. All results will be compared with measured and simulated species densities reported in the literature.

1We gratefully acknowledge funding from US Department of Energy (DE-SC0001939) and National Science Foundation (PHY-1415353).

Gottlieb Oehrlein
University of Maryland

Date submitted: 03 Jun 2016
Electronic form version 1.4