Abstract Submitted for the GEC16 Meeting of The American Physical Society

Influence of $Ar/O_2/H_2O$ Feedgas AND $N_2/O_2/H_2O$ Environment on the Interaction of Time Modulated MHz Atmospheric Pressure Plasma Jet (APPJ) with Model Polymers¹ GOTTLIEB OEHRLEIN, PING-SHAN LUAN, ANDREW KNOLL, University of Maryland, SANTOSH KONDETI, PETER BRUGGEMAN, University of Minnesota — An Ar/O₂/H₂O fed time modulated MHz atmospheric pressure plasma jet (APPJ) in a sealed chamber was used to study plasma interaction with model polymers (polystyrene, poly-methyl methacrylate, etc.). The amount of H_2O in the feed gas and/or present in the N_2 , O_2 , or N_2/O_2 environment was controlled. Short lived species such as O atoms and OH radicals play a crucial role in polymer etching and surface modifications (obtained from X-ray photoelectron spectroscopy of treated polymers without additional atmospheric exposure). Polymer etching depth for Ar/air fed APPJ mirrors the decay of gas phase O atoms with distance from the APPJ nozzle in air and is consistent with the estimated O atom flux at the polymer surface. Furthermore, whereas separate O_2 or H_2O admixture to Ar enhances polymer etching, simultaneous addition of O_2 and H_2O to Ar quenches polymer etching. This can be explained by the mutual quenching of O with OH, H and HO_2 in the gas phase. Results where O_2 and/or H_2O in the environment were varied are consistent with these mechanisms. All results will be compared with measured and simulated species densities reported in the literature.

¹We gratefully acknowledge funding from US Department of Energy (DE-SC0001939) and National Science Foundation (PHY-1415353).

Gottlieb Oehrlein University of Maryland

Date submitted: 03 Jun 2016

Electronic form version 1.4