Determination of Collisional Quenching Rate Coefficient of $\text{N}_2(A^3\Sigma_u^+)$ by H_2O

SUSUMU SUZUKI, HARUO ITOH, Chiba Institute of Technology — The effective lifetimes of metastable excited molecule $\text{N}_2(A^3\Sigma_u^+)$ in $\text{N}_2/10.2$ppm H_2O and $\text{N}_2/103$ppm H_2O mixtures were measured by waveform analysis$^\text{(1)}$ of the transient ionization current after interruption of the initial electron from the cathode in the Townsend discharge region. The collisional quenching rate coefficient of $\text{N}_2(A^3\Sigma_u^+)$ by H_2O was determined together with the diffusion coefficient of $\text{N}_2(A^3\Sigma_u^+)$ in nitrogen and the reflection coefficient of $\text{N}_2(A^3\Sigma_u^+)$ at the cathode surface with the procedure based on the diffusion equation analysis$^\text{(2)}$. The obtained collisional quenching rate coefficient of $\text{N}_2(A^3\Sigma_u^+)$ by H_2O is 5.7×10^{-13} cm3/s. This value is ten times as large of the value reported by Callear and Wood$^\text{(3)}$.