Abstract Submitted for the GEC16 Meeting of The American Physical Society

Determination of Collisional Quenching Rate Coefficient of $N_2(A^3\Sigma_u^+)$ by H_2O SUSUMU SUZUKI, HARUO ITOH, Chiba Institute of Technology — The effective lifetimes of metastable excited molecule $N_2(A^3\Sigma_u^+)$ in $N_2/10.2ppm$ H₂O and $N_2/103ppm$ H₂O mixtures were measured by waveform analysis⁽¹⁾ of the transient ionization current after interruption of the initial electron from the cathode in the Townsend discharge region. The collisional quenching rate coefficient of $N_2(A^3\Sigma_u^+)$ by H_2O was determined together with the diffusion coefficient of $N_2(A^3\Sigma_u^+)$ in nitrogen and the reflection coefficient of $N_2(A^3\Sigma_u^+)$ at the cathode surface with the procedure based on the diffusion equation analysis⁽²⁾. The obtained collisional quenching rate coefficient of $N_2(A^3\Sigma_u^+)$ by H_2O is 5.7×10^{-13} cm³/s. This value is ten times as large of the value reported by Callear and Wood⁽³⁾. (1) S. Suzuki, H. Itoh, H. Sekizawa and N. Ikuta, J. Phys. Soc. Jpn., 62, No.8, 2692-2697 (1992) (2) S.Suzuki and H.Itoh, J. Phys D: Appl. Phys., 49,185202(14pp) (2016) (3) A. B. Callear and P. M. Wood, Trans. Faraday Soc., 67, 598-600 (1971)

Susumu Suzuki Chiba Institute of Technology

Date submitted: 09 Jun 2016

Electronic form version 1.4