Laser absorption velocimetry using an optical vortex beam

SHINJI YOSHIMURA, National Institute for Fusion Science, MITSUTOSHI ARAMAKI, Nihon University, NAOYA OZAWA, Nagoya University, KENICHIRO TERASAKA, MASAYOSHI TANAKA, Kyushu University, TOMOHIRO MORISAKI, National Institute for Fusion Science — A plain-wave-like beam, or a Hermite-Gaussian mode, has been used for conventional laser spectroscopy. Since the Doppler shift in frequency of light absorbed by a moving atom is given by the dot product of the wave vector of the light beam and an atomic velocity, it is essentially a one-dimensional measurement. It has a merit that the interpretation of the result is clear and straightforward; however, it simultaneously poses a limitation that the measurable velocity component is confined to the projection along the wave vector. This limitation may be overcome by using an optical vortex beam, or a Laguerre-Gaussian mode, which has helical phase fronts associated with orbital angular momentum of light. Due to its three-dimensional phase structure, the Doppler shift for an atom moving in the optical vortex beam has three components. Therefore, the laser measurement method that has a sensitivity even for transverse motion across the beam is possible to be achieved. We have performed laser absorption measurements using optical vortex beams as a proof-of-principle experiment, where an additional frequency shift in the absorption spectra of metastable argon neutrals in a plasma has been observed. The details of experimental results will be discussed in the conference.

1This study was partially supported by JSPS KAKENHI grand numbers 15K05365 and 25287152.

Shinji Yoshimura
National Institute for Fusion Science