Abstract Submitted for the GEC17 Meeting of The American Physical Society

O atom kinetics in RF CCP oxygen plasma at increased pressures¹ ANDREY VOLYNETS², Department of Physics, Lomonosov Moscow State University, Russia, DMITRY LOPAEV, OLGA PROSHINA, TATYANA RAKHIMOVA, ALEXANDER RAKHIMOV, Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Russia, MICROELECTRONICS DI-VISION OF SINP TEAM — In this study, the 80 MHz symmetric CCP discharge in quartz tube was used as a source of pure O₂ plasma of increased pressures (10 to 100 Torr). This research is mainly focused on the balance of O atoms that is governed by processes of O₂ dissociation and O atom loss. The use of time-resolved actinometry technique in the modulated discharge allowed experimentally determining dissociation rate constant k_{diss}^{O2} and atom loss frequency γ_{loss}^{O} . The O atom loss is connected with surface recombination at lower pressure and volume reactions at higher pressure. The variation of plasma parameters allowed varying gas temperature from 500 K up to 1800 K and this allowed to study the O atom generation and loss mechanisms in a wide range of gas conditions. The behavior of \mathbf{k}_{diss}^{O2} at low E/N and the role of ozone in γ_{loss}^{O} is discussed in detail.

Andrey Volynets Department of Physics, Lomonosov Moscow State University, Russia

Date submitted: 01 Jun 2017 Electronic form version 1.4

 $^{^1{\}rm This}$ research is supported by Russian Foundation for Basic Research (RFBR) Grant No. 16-52-16024.

²Additional affiliation: Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Russia