The role of secondary electron emission in capacitive rf plasmas at low pressure

1 BIRK BERGER, BTU Cottbus-Senftenberg, Germany; Ruhr-University Bochum, Germany, JULIAN SCHULZE, PETER AWAKOWICZ, Ruhr-University Bochum, Germany, THOMAS MUSSEN BROCK, BTU Cottbus-Senftenberg, Germany, ARANKA DERZSI, BENEDEK HORVÁTH, ZOLTÁN DONKÓ, Wigner Research Centre for Physics, Hungary — The correct choice of the ion induced secondary electron emission coefficient, γ, is of high importance to obtain realistic results by PIC/MCC-simulations of capacitive rf plasmas. In most studies, this coefficient is set to $\gamma = 0.1$ without taking into account the energy of the incident particles, the electrode material, and the surface conditions. Recently, studies showed that using a more realistic, energy dependent γ-coefficient strongly influences the outcome of computational investigations at high pressure. In CCPs used for sputtering a much lower pressure of approx. 1 Pa is used. In this regime, the plasma-surface interaction can lead to a change of the surface conditions, e.g. by target poisoning. This can result in process drifts. This effect is usually linked to the change of γ but it is not understood how γ affects the plasma at such low pressures, where the multiplication of secondary electrons within the sheath is negligible. This work investigates the effect of different γ-coefficients on the discharge by PIC/MCC-simulations at low pressures in argon. It is found that the confinement of γ-electrons by multiple reflections at the sheaths strongly influences the ionization rate.

1This work is supported by the US NSF grant 1601080, by the German DFG SFB TR 87 grant, and Hungarian grants K-119357 and PD-121033.

Birk Berger
BTU Cottbus-Senftenberg; Ruhr-University

Date submitted: 08 Jun 2017 Electronic form version 1.4