Abstract Submitted for the GEC18 Meeting of The American Physical Society

Study of Irradiation Damage Induced by Helium Ion in Fe-based Metallic Glass XIANXIU MEI, XIAONAN ZHANG, JIANBING QIANG, YOU-NIAN WANG, Dalian University of Technology, KEY LABORATORY OF MATE-RIALS MODIFICATION BY LASER, ION AND ELECTRON BEAMS TEAM — The changes in structure and surface morphology of metallic glasses $Fe_{80}Si_{7,43}B_{12.57}$ and $Fe_{68}Zr_7B_{25}$ before and after the irradiation of He ions with the energy of 300keV were investigated, and were compared with that of the tungsten. In metallic glass $Fe_{80}Si_{7,43}B_{12,57}$, when the fluence of He ions was up to $410^{17}ions/cm^2$ (19dpa), crystallization occurred, and a small amount of metastable β -Mn type phase nanocrystals formed. When the fluence increased to 110^{18} ions/cm² (47dpa), the quantity of nanocrystals increased and metastable β -Mn type phase transformed into α -Fe phase and tetragonal Fe₂B phase. Then orthogonal Fe₃B phase and β -Mn type phase formed and were added to the nanocrystals as the fluence increased to 1.610^{18} ions/cm²(69dpa), while metallic glass Fe₆₈Zr₇B₂₅ maintained amorphous under the He ion irradiation, till the fluence was up to 1.610^{18} ions/cm² (69dpa). This indicates that the irradiation resistance of $Fe_{68}Zr_7B_{25}$ is better. After the irradiation, different damage morphologies were exhibited on the surfaces of the two kinds of Fe-based metallic glasses. When the fluence was 1.610^{18} ions/cm², cracks and ductile shear steps appeared on the surface of metallic glass $Fe_{80}Si_{7,43}B_{12,57}$, and spalling as well as brittle fracture morphology appeared on the surface of metallic glass $Fe_{68}Zr_7B_{25}$. However, blisters and spallings occured on the surface of tungsten at the irradiation fluence of 110^{18} ions/cm², and with the increase of irradiation fluence, the spalling phenomenon became more serious. Thus the irradiation resistance of Fe-based metallic glasses is better than that of tungsten.

> Xianxiu Mei Dalian University of Technology

Date submitted: 14 Jun 2018

Electronic form version 1.4