Novel voltage-based temperature measurement method for dielectric barrier discharges

ROBERT BANSEMER, Leibniz Institute for Plasma Science and Technology (INP), ANSGAR SCHMIDT-BLEKER, Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany, URSULA VAN RIENEN, Institute of General Electrical Engineering, University of Rostock, Germany, KLAUS-DIETER WELTMANN, Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany — For a multitude of processes based on dielectric barrier discharges (DBD), gas temperature is a crucial control parameter. One notable example is the production of ozone or different nitrogen oxides from air depending on pressure and temperature. In order to provide a means to control processes such as the species production, the suitability of a temperature determination based on changes of the gas-gap voltage in DBD has been evaluated. The method is destined for sine-driven devices and is based on a dependence of the gas-gap voltage on the gas density and hence on temperature and pressure in the active zone. It was found that the proposed method allows reaching a precision adequate for the designated purpose while being non-intrusive and working both in a stationary as well as in a flowing process gas. No equipment besides the setup for capturing the Lissajous-figure is needed. The method has been validated by thermistor measurements. Furthermore, computational fluid dynamics simulations were performed to investigate the temperature distribution within the device under test.

1RB gratefully acknowledges funding by the German Research Foundation (DFG), grant no. WE4416/2-1.

Robert Bansemer
Leibniz Institute for Plasma Science and Technology (INP)

Date submitted: 14 Jun 2018

Electronic form version 1.4