Abstract Submitted
for the GEC18 Meeting of
The American Physical Society

Phase-resolved modelling of a filamentary argon plasma in an
RF plasma jet F. SIGENEGER, M. M. BECKER, J. SCHEFER, R. FOEST,
D. LOFFHAGEN, Leibniz Institute for Plasma Science and Technology, Felix-
Hausdorff-Str. 2, 17489 Greifswald, Germany — A time-dependent, spatially two-
dimensional fluid model, combined with a model of the gas flow and heating, is used
to describe the RF plasma in a miniaturized non-thermal plasma jet. The jet is con-
figured as a capacitively coupled capillary discharge driven by an RF voltage at a
frequency of 27.12 MHz which is supplied to the upper of both the ring-shaped elec-
trodes attached to the capillary. The lower electrode is grounded. In the active zone
between both electrodes, a filamentary plasma is ignited in the argon gas flowing
from above through the capillary. In the present contribution, first results of a com-
bined model including the temporal resolution of the RF period and the influence of
the gas flow and heating are presented. A curved trajectory representing the filament
is obtained which guides the current between the powered and grounded electrodes.
Along this path, the electron density reaches values of more than 10^{20} m$^{-3}$. The gas
flow leads to density profiles of all species which are shifted in downstream direction.
Striations are generated from the upstream side and spread in downstream direction.
The phase-resolved evolution of the mean energy shows slight modulations in the
bulk and large ones in the sheath regions in front of the electrodes.

Florian Sigeneger
Leibniz Institute for Plasma Science and Technology

Date submitted: 19 Jun 2018