O atom kinetics in RF CCP oxygen plasma at increased pressures

ANDREY VOLYNETS, DMITRY LOPAEV, OLGA PROSHINA, TATIANA RAKHIMOVA, ALEXANDER RAKHIMOV, Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Russia — In this study, the 81 MHz symmetric CCP discharge in quartz tube at increased pressures (10 to 100 Torr) was used to study O$_2$ dissociation mechanism. The use of both spatially resolved and time-resolved actinometry technique on Kr in the modulated rf discharge allowed measuring atom loss frequency ν_{loss}^O and dissociation degree and thereby determining dissociation rate constant $k_{\text{diss}}^{O_2}$. The O atom loss is connected with surface recombination at lower pressure and volume reactions at the higher pressure. The variation of plasma parameters allowed studying the O$_2$ dissociation and O atom loss mechanisms in a wide range of gas temperature from \sim 500 K up to 1800 K. The possible mechanism of increasing $k_{\text{diss}}^{O_2}$ at low E/N as well as the role of ozone generation in ν_{loss}^O is discussed in detail.

1This research is supported by Russian Foundation for Basic Research (RFBR) Grant No. 18-32-00932\'18 and No. 16-52-16024