Experimental and theoretical results on effect of multi-step ionization on total energy loss in an argon inductive discharge YOUNG-HUN HONG, CHIN-WOOK CHUNG, Hanyang University — The change of total energy loss (ε_T) with electron temperature was analyzed by a global model considering multi-step ionization in the argon inductive discharge. As pressure increases, collisional energy loss (ε_c) increases but mean kinetic energy lost per ion lost (ε_i) and mean kinetic energy lost per electron lost (ε_e) decrease. Therefore, there is a pressure that ε_T becomes minimum and its corresponding electron temperature is present. When ε_T is minimized at certain pressure and electron temperature, the plasma is more efficiently generated and the density is maximized. The ε_c considered the multi-step ionization is lower than the unconsidered case. It can be predicted that there will be a minimum value of ε_T at lower electron temperature. In this work, we studied the effect of multi-step ionization on the electron temperature where ε_T is the minimum. For each condition, the electron temperature and the plasma density were measured and the total energy loss ε_T was obtained through these measured values.