Abstract Submitted
for the GEC18 Meeting of
The American Physical Society

Evaluation of gas phase and wall surface chemical reactions in CF$_4$ and C$_4$F$_8$ plasmas

XI-FENG WANG, Dalian University of Technology, China; Princeton Plasma Phys Lab, US, YUAN-HONG SONG, YOU-NIAN WANG, Dalian University of Technology, China, IGOR KAGANOVICH, Princeton Plasma Phys Lab, US — A global model implanted with a set of gas phase and wall surface chemical reactions is used in this work for CF$_4$ and C$_4$F$_8$ plasmas in an inductively coupled plasma chamber. Firstly, by using the same set of chemical reactions, composition of radicals as well as ions is benchmarked. A study on contributions of gas phase and surface reactions to the production and consumption of species shows that surface chemistry plays a significant role in F, CF$_3$ and CF$_2$ radicals in CF$_4$ and C$_4$F$_8$ plasmas, respectively. We also study the variation of plasma properties as a function of pressure and power at fixed gas inlet. Furthermore, in order to investigate impacts of electron energy distribution functions (EEDF) on plasma sources and sinks, both Maxwellian and non-Maxwellian EEDFs integrated with cross sections are used to evaluate the difference of chemical compositions in these plasmas.

1This work is supported by National Natural Science Foundation of China (Grant No. 11675036 and 11275038); U.S. Department of Energy;

Xifeng Wang
Dalian University of Technology, China; Princeton Plasma Phys Lab

Date submitted: 18 Jun 2018

Electronic form version 1.4