Response of Average Electron Velocity Vector under AC Electric and DC Magnetic Fields in a Constant-Collision-Frequency Model

HIROTAKE SUGAWARA, Hokkaido University, Japan — In order to study fundamental features of electron transport in magnetized plasmas, the average electron velocity \mathbf{V} in gas under uniform AC electric and DC magnetic fields, \mathbf{E} and \mathbf{B}, crossed at a right angle is theoretically derived assuming a constant collision frequency ν. When $\mathbf{E} = (0, -E \sin \omega_E t, 0)$ and $\mathbf{B} = (0, 0, B)$, the analytical solution of $\mathbf{V} = (V_x, V_y, V_z)$ in periodical steady state is

\[V_x = 2a \left[\omega_E^2 \cos \omega_E t + \nu^2 \right] \sin \omega_E t, \]
\[V_y = \left[a (\omega_E^2 + \omega_B^2 + \nu^2) \right] \sin \omega_E t - \left[a (\omega_E^2 - \omega_B^2 + \nu^2) \right] \cos \omega_E t \]
\[V_z = 0. \]

Here, $a = eE/m$, $\omega_B = eB/m$, $\Omega = (\omega_E^2 + \omega_B^2 + \nu^2)/(\omega_E^2 - \omega_B^2 + \nu^2)$, and e and m are the electronic charge and mass. Although this model ignores the dependence of the collisions on electron energy, it is a merit that basic \mathbf{V} responses at various E and B are predictable from the solution. \mathbf{V} draws an ellipse in the V_xV_y-plane synchronously to \mathbf{E} and the tilt of its major axis represents the time-averaged Hall deflection angle of \mathbf{V}. This depiction is informative to understand the electron swarm response under AC \mathbf{E} and DC \mathbf{B} fields.

\[1 \] Work supported by JSPS KAKENHI grant JP19K03780.

Hirotake Sugawara
Hokkaido University

Date submitted: 02 Jun 2019