Abstract Submitted for the GEC19 Meeting of The American Physical Society

On finding low Global Warming Potential (GWP) precursor for SiO₂ etching through plasma radical measurement CHUL HEE CHO, Chungnam National University, SIJUN KIM, Chungnam National University, Nanotech Optoelectronics Research Center, JANGJAE LEE, YEONGSEOK LEE, SANGHO LEE, INHO SEONG, SHINJAE YOU¹, Chungnam National University $-C_4F_8$, and CF_4 are precursor for etching SiO_2 , but they have high Global Warming Potential (GWP), so many researches to find low GWP precursors were investigated. However, the problem is that if the low GWP precursors were found, SiO_2 etching characteristics with those precursors should be researched by SiO₂ etching process, so it takes too much time. In this research, we proposed a new mechanism to forecast SiO_2 etch rate, and Si/SiO_2 selectivity by diagnostics of plasma radical density. The radical diagnostics data shows that C_4F_9I has similar selectivity and SiO_2 etch rate with C_4F_8 , and $C_6F_{12}O$ has better selectivity and SiO_2 etch rate than C_4F_8 . To verify this mechanism, SiO_2 etch data were analyzed by Scanning Electron Microscope (SEM) and it confirmed well with this mechanism. This research contributes plasma diagnostics in etching process.

¹Corresponding author

Chul Hee Cho Chungnam National University

Date submitted: 03 Jun 2019

Electronic form version 1.4