2D axial-azimuthal Particle-In-Cell benchmark for low-temperature magnetized plasmas

THOMAS CHAROY, Laboratoire de Physique des Plasmas, JEAN-PIERRE BOEUF, LAPLACE, ANNE BOURDON, PASCAL CHABERT, Laboratoire de Physique des Plasmas, DENIS EREMIN, Ruhr-Universität, LAURENT GARRIGUES, LAPLACE, KEN HARA, Texas A&M University, TASMAN POWIS, Princeton University, ANDREI SMOLYAKOV, DMYTRO SYDORENKO, University of Saskatchewan, ANTOINE TAVANT, Laboratoire de Physique des Plasmas, WILLCA VILLAFANA, CERFACS — In applications such as ion sources or plasma processing, the gas pressure is relatively low and plasma confinement by a magnetic field is required. We call these plasmas partially magnetized plasmas because electrons are strongly magnetized, while ions are not. The magnetic field can be responsible for a variety of instabilities that are difficult to describe quantitatively. A kinetic description is needed to understand these instabilities but prior to use a Particle-In-Cell (PIC) code extensively, it is important to be sure of its correctness. Unit tests can be used to verify specific modules and benchmarks can be defined in a more global approach, such as the 1D Helium benchmark of Turner et al, in which 5 independent PIC codes were giving similar results. However, we needed here a simulation case that was closer to the complex physics of an ExB discharge. A 2D axial-azimuthal simulation case was chosen and the results of 7 independent PIC codes have been compared extensively (mean parameters and instabilities characteristics). A particular focus has been made on the dependance on number of particles per cell, as it has been recently shown to influence numerical results.

Thomas Charoy
Laboratoire de Physique des Plasmas

Date submitted: 05 Jun 2019

Electronic form version 1.4