Abstract Submitted for the GEC20 Meeting of The American Physical Society

Interactions of floating-wire-assisted atmospheric-pressure H_2/Ar plasma with SnO_2 film on glass substrate forming spherical Sn particles¹ THI-THUY-NGA NGUYEN, Nagoya University, Nagoya, 464-8601, Japan, MI-NORU SASAKI, Toyota Technological Institute, Nagoya, 468-8511, Japan, HIDE-FUMI ODAKA, AGC Inc., Yokohama, 230-0045, Japan, TAKAYOSHI TSUT-SUMI, KENJI ISHIKAWA, MASARU HORI, Nagoya University, Nagoya, 464-8601, Japan — Tin (Sn) metal has been extracted from ores for a long time and is a highly demanded material for industrial applications To extract Sn metal from SnO₂, various reduction processes required high-treatment temperatures and reducing agents such as CH_4 that produces CO_2 emission In this study, the floatingwire-assisted atmospheric-pressure plasma using a mixture of 0.05% H₂/Ar gas can reduce SnO_2 film on glass substrate to form Sn spheres without using any additional heater. The H_2/Ar plasma with a high electron density of 10^{14} cm⁻³, a hydrogen atom density of 10^{14} cm⁻³, and a rotational temperature of 940 K was obtained at a remote distance of 150 mm. A model for the formation of spherical Sn particles from SnO_2 film on glass substrate in H_2/Ar plasma is presented here. The treatment time and substrate temperature affect the expansion rate of the reduction area and the growth of Sn spheres. The results present a green method to synthesize Sn particles from SnO_2 in atmospheric-pressure plasma for various applications.

¹Interactions of floating-wire-assisted atmospheric-pressure H2/Ar plasma with SnO2 film on glass substrate forming spherical Sn particles

Thi-Thuy-Nga Nguyen Nagoya University, Nagoya, 464-8601, Japan

Date submitted: 26 May 2020

Electronic form version 1.4