Abstract Submitted for the GEC20 Meeting of The American Physical Society

Tailoring OH and O production in an atmospheric-pressure plasma in Helium with O_2 and H_2O admixtures¹ ERIK WAGENAARS, ALEXANDRA BRISSET, SANDRA SCHROETER, KARI NIEMI, DEBORAH O'CONNELL, University of York, U.K., JEAN-PAUL BOOTH, Ecole Polytechnique, France, ANDREW R. GIBSON, Ruhr University Bochum, Germany — Reactive oxygen species (ROS), including OH and O, are key in many applications of atmospheric-pressure plasmas. Controlled delivery of known amounts of ROS is important for the efficiency and safety of plasma-based treatments. Adding molecular admixtures such as O₂ and H₂O to the plasma feed gas, rather than relying on ambient diffusion, enhances control of ROS production. Here, we investigated the kinetics of OH and O in an RF atmospheric-pressure plasma in Helium with H_2O+O_2 admixtures. The density of OH was measured by UV absorption spectroscopy. A 0D plasma-chemical kinetics model was used to compare the experimental results and understand the reaction pathways. Increasing densities of OH in the order of 10^{14} cm⁻³ were measured for increasing H₂O content. The addition of O₂ did not significantly increase the OH density, despite the fact that the OH production, mainly through O and O* species, increases by a factor of ten, because the destruction pathways also depend on O and O^* , and increase accordingly by roughly the same factor. This means that admixtures of H_2O+O_2 allow independent control of OH, through H_2O content, and O, through O_2 content, allowing more detailed control of ROS delivery in applications.

¹We acknowledge UK EPSRC support (EP/S026584/1, EP/K018388/1, EP/S025790/1).

Erik Wagenaars University of York, York

Date submitted: 12 Jun 2020

Electronic form version 1.4