Abstract Submitted for the GEC20 Meeting of The American Physical Society

Reactions of Interstellar Ions O⁺ and N₂H⁺ with Electrons and Molecules¹ PETR DOHNAL, STEPAN ROUCKA, ARTEM KOVALENKO, DMYTRO SHAPKO, THUY DUNG TRAN, SERHIY REDNYK, RADEK PLASIL, JURAJ GLOSIK, Faculty of Mathematics and Physics, Charles University — We present the experimental results of study of reaction rate coefficients for selected reactions of atomic (O^+) or molecular (N_2H^+) ions with hydrogen isotopologues or electrons, respectively. The recombination of N₂H⁺ ions with electrons was studied in the temperature range of 80 – 350 K using cryogenic stationary afterglow apparatus equipped with cavity ring-down spectrometer. The thermal recombination rate coefficients were evaluated from the time evolutions of number densities of selected rovibrational states of N₂H⁺. The cryogenic 22-pole radiofrequency ion trap was utilized to study the reactions of the ground electronic state of O⁺ ions with HD in the temperature range of 15-200 K and with D_2 in the temperature range of 15-300 K. For the reaction of O⁺ ions with HD, the product branching ratios for the production of OH⁺ and OD⁺ ions were obtained. A careful attention was given to ensure that the obtained reaction rate coefficients pertained to the ground electronic state of O^+ ion.

 1 This work was partly supported by the Czech Science Foundation GACR 20-22000S

Petr Dohnal Faculty of Mathematics and Physics, Charles University

Date submitted: 09 Jul 2020 Electronic form version 1.4