HAW05-2005-000011

Abstract for an Invited Paper for the HAW05 Meeting of the American Physical Society

Hydrodynamic approaches to RHIC physics TETSUFUMI HIRANO, Columbia University

One of the most intriguing findings in the experiments at Relativistic Heavy Ion Collider (RHIC) in Brookhaven National Laboratory (BNL) is a large magnitude of momentum anisotropy in comparison with the ones observed at lower collision energies. The momentum anisotropy in noncentral collisions is characterized by the second Fourier coefficient v_2 of the azimuthal distribution for observed particles. The magnitude of v_2 and its transverse momentum p_T dependence for identified hadrons are comparable with results from *ideal* hydrodynamic simulations around midrapidity ($|\eta| < \sim 1$), in low transverse momentum region ($p_T < \sim 1 \text{ GeV}/c$), and up to semicentral collisions ($b < \sim 5 \text{ fm}$). This is evidence for a recent announcement of the discovery of the perfect fluidity in the strongly coupled/interacting quark gluon plasma (sQGP) as distinct from the weakly coupled/interacting QGP (wQGP) which had been assumed to be created for a long time. Though the ideal hydrodynamic description at RHIC is apparently successful, this in turn raises a couple of new questions about hydrodynamic behavior of bulk matter produced in relativistic heavy ion collisions. In this talk, I will present current understanding of matter produced at RHIC and discuss open issues in modeling dynamics of relativistic heavy ion collisions based on hydrodynamics.