Abstract Submitted for the HAW05 Meeting of The American Physical Society

Compton scattering on the proton and deuteron in chiral effective field theory¹ DANIEL PHILLIPS, Ohio University — In this talk I will discuss recent efforts I have been involved in to describe Compton scattering in one- and two-nucleon systems using chiral perturbation theory (χ PT). I will begin by summarizing the status of γ p scattering in χ PT. For this reaction we fit the two undetermined parameters in the $O(Q^4)$ γ p amplitude of McGovern [1] to experimental data in the region ω , $\sqrt{|t|} \le 180$ MeV, obtaining a χ^2 /d.o.f. of 133/113 [2]. This yields a model-independent extraction of proton polarizabilities based solely on low-energy data: $\alpha_p = (12.1 \pm 1.1 \text{ (stat.)})^{+0.5}_{-0.5} \text{ (theory)}$ and $\beta_p = (3.4 \pm 1.1 \text{ (stat.)})^{+0.1}_{-0.1} \text{ (theory)}$, both in units of 10^{-4} fm³. I will then discuss how the χ PT formalism can be extended to treat deuteron Compton scattering. In particular, χ PT provides a systematic treatment of the large isoscalar exchange currents that occur in this process, and so it facilitates extractions of nucleon polarizabilities from γ d data which have a well-motivated theoretical error bar [2].

References

- [1] J.A. McGovern, Phys. Rev. C 63, 064608 (2001).
- [2] S.R. Beane, M. Malheiro, J.A. McGovern, D.R. Phillips, and U. van Kolck, Phys. Lett. B 567, 200 (2003); Nucl. Phys. A 747, 311 (2005).

¹Work supported by the US Department of Energy

Daniel Phillips Ohio University

Date submitted: 06 May 2005 Electronic form version 1.4