Abstract Submitted for the HAW05 Meeting of The American Physical Society

Heavy Quarkonia in Quark-Gluon Plasma¹ CHEUK-YIN WONG, Physics Division, Oak Ridge National Laboratory & University of Tennessee, Knoxville, TN — Does the Q- \bar{Q} potential from lattice gauge data yield a J/ψ dissociation temperature ~1.6 T_c as in lattice spectral function analyses? Is there a strong coupling between a static Q and \bar{Q} in their color-singlet states in the quarkgluon plasma? From a variational principle, we find the color-singlet Q- \bar{Q} potential to be $f_F F_1 + (1 - f_F)U_1$, where F_1 is the lattice gauge color-singlet free energy, U_1 the internal energy, $f_F = 3/(3 + a(T))$, and a(T) = 3(pressure)/(energy density) is from the equation of state. We find that J/ψ dissociates spontaneously above 1.56 T_c , while χ_c and ψ' are unbound in the quark-gluon plasma. Our analysis lends support to the theoretical result that J/ψ is bound up to ~1.6 T_c . However, J/ψ has a binding energy ~ 0.04 GeV at 1.13 T_c , indicating that the coupling between a static Q and \bar{Q} in their color-singlet states is quite weak in the quark-gluon plasma. For details, please browse http://www.arxiv.org/pdf/hep-ph/0408020.

¹Supported by the Division of Nuclear Physics, U.S.D.O.E., under Contract No. DE-AC05-00OR22725, managed by UT-Battelle, LLC and by N.S.F. under contract NSF-Phy-0244786 at the University of Tennessee.

Cheuk-Yin Wong Oak Ridge National Laboratory

Date submitted: 10 May 2005

Electronic form version 1.4